
1 © 2012 The MathWorks, Inc.

Guest

Lecture: Antwerpen

 Gareth Thomas

 Rachid Adarghal

2

Focal Points

 With MATLAB/Simulink my professors think I am clever

 Knowing MATLAB/Simulink will help you get a job!

 Multi-Modeling Techniques are often needed

3

Motivation

 With MATLAB/Simulink my professors think I am clever

– The tools will make your life easier.

 Knowing MATLAB/Simulink will help you get a job!

– Put it on your CV, as you will encounter this after your

degree

 Multi-Modeling Techniques are often needed

– The real world is so complex, the solution comes from

combining multiple domains

4

Agenda

Power Window – Example of Model Based Design

• MATLAB - Textual

• Simulink - Blocks

• StateFlow - States

• State Transition - Tables

• Simscape - Physical Modeling

Some Modeling Tools from MathWorks

• Test Generation

• Coverage

• Counter Examples

• Model Transformation is Key

Introduction to Verification and Validation

Tools in Industry

5

Introduction to the Speaker

Gareth Thomas

 Masters in Electronic Engineering at Instituto Superior Técnico

 Control Theory and Signal Processing

 Consultant at Altran CIS in Portugal

 Innovation Officer at Nokia Siemens Networks in Portugal

 Software Engineer at Oceanscan in Scotland

 Application Engineer at Mathworks Benelux

http://www.linkedin.com/search?search=&sortCriteria=3&keywords="Instituto+Superior+T%C3%A9cnico"
http://www.linkedin.com/search?search=&sortCriteria=3&keywords="Instituto+Superior+T%C3%A9cnico"

6

MathWorks Products

 How Many Toolboxes/Blocksets do you use?

– 1 – 10

– 10 – 15

– 15 – 30

– 30 – 60

– >60

 How many toolboxes/Blockset do we offer?

– 30 – 40

– 40 – 50

– 50 – 60

– 60 – 70

– >70

92!

7

MathWorks Products

8

MathWorks Vital Statistics

Developers of MATLAB & Simulink

2,800 staff worldwide

Support staff worldwide

Development staff in Natick, MA

30% of revenue invested in R&D

$500M annual revenue

 2009 - orders from

23,000 companies

in 128 countries

8

9

Revolution in Engineering Education

5000+ universities

worldwide use MATLAB

> Includes all of the Top 200

World Universities*

More than 1 million students

and faculty have access to

MathWorks tools through

campus-wide licenses

> More than 130 academic

institutions, including 10 of the

Top 20 World Universities*

* Source: Times Higher Education-QS World University Rankings 2009

Over 1400 MATLAB based

books in 27 languages

http://www.mathworks.com/services/training/courses/SF01_1.html?typeCode=438
http://www.mathworks.com/services/training/courses/SF01_1.html?typeCode=438
http://www.mathworks.com/services/training/courses/SF01_1.html?typeCode=438

10

Model-Based Design

11

Power Window Video

12

Window

Mechanism

Power Window System

Armature Current

+
- 12V

Up

Up Down

Down

V+ V-

H-Bridge
DC Motor

s1 s2

s3

Control

System

Switches

SimMechanics
Stateflow

SimElectronics SimElectronics SimElectronics

13

Steps Taken

 Define Problem (Requirements)

 Model Plant (window)

 Model Controller

 Test System - Simulation

 Generate C-Code, implement it

 Test System – Real Window

 Model-Based Design

INTEGRATION

IMPLEMENTATION

T
E

S
T

 &
 V

E
R

IF
IC

A
T

IO
N

DESIGN

Research Requirements

Fixed-Point

MCU DSP

C, C++

PCs

Algorithms

14

Power Window: Modeling the Plant

+
- 12V

Up

Up Down

Down

V+ V-

H-Bridge

Window

Mechanism
DC Motor

15

Power Window: Defining the Controller

 Event-Based Control

– For systems that change mode

based on events

– Examples

 Automatic transmission

 Power window

– Best modeled in Stateflow

1st Gear

2nd Gear

3rd Gear

4th Gear

Speed > 24km/h

Speed > 64km/h

Speed > 96km/h
Speed < 32 km/h

Speed < 56 km/h

Speed < 88km/h

+ -

 Compensator Design

– For systems where actuation

is based on deviation from a

commanded value (e.g. PID)

– Examples
 Robot position

 Motor speed

– Best modeled with Simulink
Control Design and other
control design tools

16

Defining the Controller: Inputs

Driver

Switches

Passenger

Switches

Driver Up

Driver Down

Passenger Up

Passenger Down

1) Driver‟s side switch has precedence

 over passenger switch

2) If no switches are closed, movement of

 window is defined based on history

Stateflow Truth Table
 Input to controller are switches

Driver Up T F F F -

Driver Down F T F F -

Passenger Up - - T F -

Passenger Down - - F T -

Action -

Specification

17

Defining the Controller: States

Emergency

Down

Stop
Move

End Stop

Switch Input

Failsafe Timeout

Obstacle

End stop reached

Direction

Mode

Auto

Manual

Down

Up

Specification

Manual Stop

Stateflow Chart

18

+ -

Possibilities for Compensator Design

 Linear Control Theory

– Linearize system using
Simulink Control Design

– Perform linear control design
with Control System Toolbox

– Test controller in nonlinear system

A x + B u

Root Locus Bode Plot

Real Axis Frequency

+ -

 Specify System Response
– Specify response characteristics

– Automatic tuning using Simulink

Design Optimization

19

Power Window: Generate Test Cases

20

Power Window: Generate C/C++ Code

21

Power Window: Test System in Real Life

22

Putting it all together: Model-Based

Design

23

History of Software Development

 Challenge appears… and so do proposed solutions.

Code Base

Grows

Version

Control

Coding

Standards

Industry

Standards

24

History of Software Development - Challenges

Code base

grows

Quality is

more

important

Technology

grows faster

than

population

Time

pressure

Multiple

domains

come

together

Software

teams

grow

Processing

power

increases

New

programming

languages

New

hardware

platforms
Companies

grow

Finding

the right

people

Industries

grow

Auditing to

protect

consumer

Budget

restrictions

http://www.openclipart.org/people/nicubunu/nicubunu_Emoticons_Question_face.svg

25

Software Development - Concepts

Code base

grows

Quality is

more

important

Technology

grows faster

than

population

Time

pressure

Multiple

domains

come

together

Software

teams

grow

Processing

power

increases

New

programming

languages

New

hardware

platforms
Companies

grow

Finding

the right

people

Industries

grow

Auditing to

protect

consumer

Budget

restrictions

Version

control

Simulation Separate

hardware

from

software

Coding

standards

Industry

standards

Model-

Based

Design

Certification

Translation

between

languages

Task

automation

Reports

Traceability

Verification

and

validation

http://www.openclipart.org/people/nicubunu/nicubunu_Emoticons_Question_face.svg

26

Model-Based

Design

Model-Based Design

Version

control

Simulation Separate

hardware

from

software

Coding

standards

Industry

standards

Modeling

and

prototyping

Certification

Translation

between

languages

Task

automation

Reports

Traceability

Verification

and

validation

Code base

grows

Quality is

more

important

Technology

grows faster

than

population

Time

pressure

Multiple

domains

come

together

Software

teams

grow

Processing

power

increases

New

programming

languages

New

hardware

platforms
Companies

grow

Finding

the right

people

Industries

grow

Auditing to

protect

consumer

Budget

restrictions

27

Expensive to fix errors found late in the process

Introduced

Detected

0%

10%

20%

30%

40%

50%

60%

70%

Spec

Design

Implement

Test

60%

21%

12%

7%

8%
15%

22%

55%

Source: “Migration from Simulation to Verification with

ModelSim” by Paul Yanik. EDA Tech Forum, 2004 Mar

11, Newton MA

“…each delay in

the detection and

correction of a

design problem

makes it an order

of magnitude more

expensive to fix…”

Clive Maxfield and Kuhoo Goyal

“EDA: Where Electronics Begins”

TechBites Interactive, October 1, 2001

ISBN: 0971406308]

28

Moore‟s Law

29

Moore‟s Law
N

u
m

b
e

r o
f E

m
p

lo
y
e

e
s
: In

c
re

a
s
e

1
0

%
 e

v
e

ry
 y

e
a

r

30

Workflow for Model-Based Design

31

Summer of 95!

32

MATLAB - Textual

33

Accelerating the Pace of Engineering and Science

Computer

Reduce the effort to:

 Translate your thoughts for the computer

 Interpret the results from the computer

Translation

Interpretation

34

Accelerating the Pace of Engineering and Science

Similarities between Industries:

 Matrix / vector based mathematics

 Standard and specific operations

 Specific analysis charts

35

Accelerating the Pace of Engineering and Science

 Direct use of matrix

equations

36

Accelerating the Pace of Engineering and Science

 Direct use of matrix

equations

37

Accelerating the Pace of Engineering and Science

 Direct use of matrix

equations

MATLAB Code
function y=MatrixEquation(A,x,b)

y=A*x+b;

38

Accelerating the Pace of Engineering and Science

C Code
void MatrixEquation(float A[100], float x[10], float

b[10], float y[10])

{

 int32 i0;

 float d0;

 int32 i1;

 for(i0 = 0; i0 < 10; i0++) {

 d0 = 0.0;

 for(i1 = 0; i1 < 10; i1++) {

 d0 += A[i0 + (i1 << 1)] * x[i1];

 }

 y[i0] = d0 + b[i0];

 }

}

 Direct use of matrix

equations

 Interactive - immediate

response

MATLAB Code
function y=MatrixEquation(A,x,b)

y=A*x+b;

39

Accelerating the Pace of Engineering and Science

 Direct use of matrix

equations

 Interactive - immediate

response

 Built-in engineering

functions

MATLAB Code
function y=MatrixEquation(A,x,b)

y=A*x+b;

40

Data Analysis Tasks

Reporting and

Documentation

Outputs for Design

Deployment

Share

Explore & Discover

Data Analysis

& Modeling

Algorithm

Development

Application

Development

Files

Software

Hardware

Access

Code & Applications

Automate

41

Simulink – Visual Block Diagram

42

What is the value of their/your engineering department?

 Creativity/Innovation: bringing new ideas into practice

 Knowledge/Experience: knowing what will work and what will not

42

Accelerating the Pace of Engineering and Science

43 43

Computer

Translation

Reduce the effort to

• translate your thoughts for the computer

• interpret the results from the computer

Interpretation

Accelerating the Pace of Engineering and Science

with MATLAB & Simulink

44

How many Ports and Subsystem are there?

27!!

45

What is Simulink?

 Explains Reality (Communication)

A description using basic principles that has some predictive value about behavior

 Specifies Reality (Design)

A description using basic principles that specifies desired behavior

 Replaces Reality (Simulation)

A description that has some predictive value about the behavior of the real thing

46

What is new in Simulink?

 Simulink Projects

 Data Inspector

 Comparing XML

 Concurrent execution

 Modeling Task

 Model Variants

 Subsystem Variants

 Model Explorer Improved

 Logging to Datasets

 Comparing Files/Folders

 Parallel Builds

 Model Advisor

 Export to Web

47

What is new in Simulink Blocksets?

 Formal Methods

– Design Errors

– Property Proving

– Test Generation

 Code Generation

 Physical Modeling

 Fixed-Point word scaling

 SimEvents

 Simulink Code Inspector

 xPC Target

 SIL Performance

 Linking requirements to

word via external file

 Export to web

READ

Release

Notes!!!

48

MAB

 Open Video

C:/trunk/MyPresentations/MathWorksVideos/ReleaseHighlights/Simulink-Users-react-r2012b-FINAL_1.mp4

49

A better workflow to implementation

 One language

– No multiple copies of source code

– Integrate real-world design constraints

in MATLAB

 One integrated design environment

– Integrated visualization, analysis &

debugging

 Automatic code generation

– Path to embedded software

(Embedded C)

– Path to FPGA/ASIC (HDL)

INTEGRATION

IMPLEMENTATION

T
E

S
T

 &
 V

E
R

IF
IC

A
T

IO
N

DESIGN

Research Requirements

Fixed-Point

MCU DSP

C, C++

PCs

Algorithms

50

Introduction to Simscape:

Mechanic

Electric

Hydraulic

Magnetic

Thermal

Pneumatic

51

System-level Modeling

 Model the dynamics that matter for your analysis

 Balance cost and model fidelity

Cost (effort, computational time)

Model

fidelity

Detailed

Modeling

System-level

Modeling

52

Modeling Dynamic Systems:
two approaches

First-Principles Modeling

Use an understanding of the

system‟s physics to derive a

mathematical representation

Sir Isaac Newton

F=ma

Load Encoder

Actuator Inertia

Flexible

Shaft

Load Inertia

Sir Isaac Newton

53

First-Principles Modeling Data-Driven Modeling

Use system test data to derive a

mathematical representation

Use an understanding of the

system‟s physics to derive a

mathematical representation

Modeling Dynamic Systems:
two approaches

0 5 10 15 20
-0.01

-0.005

0

0.005

0.01
Measured Signals

time [s]

re
s
p
o
n
s
e
 [

V
]

noise

u1

u2

54

Both have Advantages & Disadvantages

First-Principles Modeling Data-Driven Modeling Complete Modeling Environment

Advantages:
 Insight in behavior

 Physical parameters

Disadvantages:
 Friction and turbulence?

 Time consuming

 Requires expertise

Advantages:
 Fast

 Accurate

Disadvantages:
 Requires plant

 Requires data acquisition system

55

Tools that span both modeling approaches
Enhance Advantages, Reduce Disadvantages

Simulink
Design

Optimization

Simulink
Stateflow

First-Principles

System
Identification

Toolbox

Data-Driven

Complete Modeling Environment

SimMechanics

SimDriveline

SimHydraulics

SimElectronics
SimPowersystems

Test &
Measurement

Tools

Simscape

56

SimMechanics: accurate modeling of 3D

mechanical systems

3D Multi-Body Dynamics

Bodies and Joints

CAD Translation

57

Traditional approach:

Derivation of the equations of motion

requires knowledge and effort.

„Simple‟ example: double pendulum

58

Traditional approach:

Derivation of the equations of motion requires

knowledge and effort.

„Simple‟ example: double pendulum

59

Revolute

Joint1

Revolute

Joint2

Joints Bodies

Fixture

Link1

Link2

+

With SimMechanics

60

Introduction to Stateflow – Flow

diagrams and State Machines

61

When should I use MATLAB?

 Next step for traditional programming (4th Generation)

 Quick and powerful (dedicated) visualization

 Simple C code Generation is possible

 Deployment

 Task Automation

 Data Analysis

62

When should I use Simulink?

 System level overview

– Signal flow/Block diagram representation

– Architecture/Hierarchy definition

 Multi Rate/Multi Domain System

– Mixed Signals

– Physical Models

 Advanced Code Generation

 Certification – Model Based Design Support

– Model Coverage, requirement traceability, formal proving,

modelling standards....

63

When should I use Stateflow?

 Control Logic

– State Machine

– Discrete Events

 Scheduling

– Drive Simulink

– Control flow Programming

 Mode Switching

 Fault Management

64

User Case – Simple filter, Image algorithm,

GUI, y = A*x + B, visualization

MATLAB

Simulink Stateflow

65

User Case – Fixed Point Development

MATLAB

Simulink Stateflow

66

User Case –Certification, System overview

MATLAB

Simulink Stateflow

67

User Case – Multi-Domain, Mixed signals,

Multi-Rate, ...

MATLAB

Simulink Stateflow

68

User Case – Concurrent States

MATLAB

Simulink Stateflow

69

User Case – Nested if then else

MATLAB

Simulink Stateflow

70

User Case – if then else

MATLAB

Simulink Stateflow

71

Having the Choice is the Real Value!

MATLAB

Simulink Stateflow

VALUE

72

What is Stateflow?

Extend Simulink with
state charts and flow
graphs

Design supervisory
control, scheduling, and
mode logic

Model state
discontinuities and
instantaneous events

73

How Does Stateflow Work with Simulink?

Simulink models
continuous changes in
dynamic systems.

Stateflow models
instantaneous changes in
dynamic systems.

 Real-world systems have to respond to both continuous and

instantaneous changes.

suspension dynamics

gear changes
propulsion system

liftoff stages

manufacturing robot

operation modes

Use both Simulink and Stateflow so that you
can use the right tool for the right job.

74

Stateflow Concepts

States

• Exclusive

• Hierarchical

• Parallel

Transitions

• Default

• Conditions

• Condition Actions

• Event Triggers

Functions

• Graphical

• Truth Tables

• MATLAB

Data

• Input/Output

• Local

• Model Explorer

• Add Menu

• Symbol Wizard

75

What Is a Flow Graph?

if-else construct

Nested while loop

A chain of logical patterns that implement a series of

decision flows

Can implement sequential, nested, and iterative flows

76

Junctions and Transitions

Transitions Default

transition

Terminating

junction

Junctions

77

Conditions and Actions

Conditions Actions

78

What Is a State Machine?

• A system that can only exist in a finite number of modes

• Can only behave in a predefined number of ways

79

States and Transitions

States

Transitions

Default transition

80

The Concepts of Parallelism

Parallel states

Exclusive states

• Parallel states enter when their parent activates.

• Transitions from or to parallel states are prohibited.

81

An Example of Stateflow® Events

82

Using Events to Trigger Actions

• Guard transitions

• Perform state actions (on keyword)

83

Broadcasting Events

• Use the event name to broadcast the event.

• This can be done anywhere that actions are specified

(state actions, condition actions, and transition actions)

84

Power Window Example

85

Introduction to Verification and

Validation

86

Where does engineering go wrong…

Design

Error?

Missing

Test?

87

Why?

Quality Source code

Control over

process

Style

structure

Run-time

Behavior

Certification

Coding

standards

Modeling

standards
Industry

standards
Metrics

Version

control

Scalable

Workflow Traceable

Tests for

run-time

Formal

methods

Reports

Tests

Simulation

Formal

Methods

Verification

Validation

Tests

Model and

code coverage

Results,

performance

Reports

88

Why?

Quality Source code

Control over

process

Style

structure

Run-time

Behavior

Certification

Coding

standards

Modeling

standards
Industry

standards
Metrics

Version

control

Scalable

Workflow Traceable

Tests for

run-time

Formal

methods

Reports

Tests

Simulation

Formal

methods

Verification

Validation

Tests

Model and

code coverage

Results,

performance

Reports

CEO

Senior

management

Quality

organization

89

Why?

Quality Source code

Control over

process

Style

structure

Run-time

Behavior

Certification

Coding

standards

Modeling

standards
Industry

standards
Metrics

Version

control

Scalable

Workflow Traceable

Tests for

run-time

Formal

methods

Reports

Tests

Simulation

Formal

methods

Verification

Validation

Tests

Model and

code coverage

Results,

performance

Reports

Project

manager

90

Why?

Quality Source code

Control over

process

Style

structure

Run-time

Behavior

Certification

Coding

standards

Modeling

standards
Industry

standards
Metrics

Version

control

Scalable

Workflow Traceable

Tests for

run-time

Formal

methods

Reports

Tests

Simulation

Formal

methods

Verification

Validation

Tests

Model and

code coverage

Results,

performance

Reports

Quality

engineer

91

Why?

Quality Source code

Control over

process

Style

structure

Run-time

Behavior

Certification

Coding

standards

Modeling

standards
Industry

standards
Metrics

Version

control

Scalable

Workflow Traceable

Tests for

run-time

Formal

methods

Reports

Tests

Simulation

Formal

methods

Verification

Validation

Tests

Model and

code coverage

Results,

performance

Reports

Engineer

92

Why?

 CEO, senior management

– Want to improve quality for product

– Yet need to remain competitive in price, time-to-market, feature content

 Project manager

– Has to give reports to quality engineer

– Has to make his team comply with standards

– Creates more work

 Engineer

– Has more work

– Pushes back because need is not clear

 Quality engineer

– Needs to work with everyone and bring them on board!

– Finds it hard

TO KEEP EVERYONE HAPPY!

93

Decision Coverage (DC)

Path Taken?

Path Taken?

if (X & Y)

 Z = 1;

else

 Z = -1;

end

T and F?

Percentage of paths taken through decision point

94

Condition Coverage (CC)

T and F?

T and F?

if (X & Y)

 Z = 1;

else

 Z = -1;

end

T and F?

T and F?

Percentage of conditions exercised

95

Modified Condition/Decision Coverage

(MC/DC)

TT, FT

TT, TF

if (X & Y)

 Z = 1;

else

 Z = -1;

end

Affects (X & Y)

to be T and F?

Affects (X & Y)

to be T and F?

Checks inputs independently affect output

96

Signal Range Coverage

97

Lookup Table Coverage (LUT)

Interpolation

interval

Click graph for

range information

2

1

0

-1

-2
2 1 0 -1 -2

c

d

Exact values

98

What Does Coverage Tell You

 Useful information:
– How much of my system did testing explore?

– How complete are someone else‟s tests?

– How much testing has a team done on a model?

– Is there a part of the model that is hard or impossible to reach?

– If using code generation, what tests are needed for the final
code?

– If I know what the expected behaviour is, did I see any
violations whilst achieving coverage?

 What it isn‟t:
– Coverage testing helps find unintended function, but doesn‟t

test for correct function on its own.

– A good starting point, but additional tests needed for full source
and object code coverage.

99

Verification and Validation @ Model Level

Manual
Testing

• Create and use
your own tests

Run Coverage
Analysis

• Generate
Automatically Tests

• Add Test cases to
get 100% Coverage

Design Analysis

• Formally look for
design Error (divisions
by 0, square roots of
negative numbers)

Test Case
Creation

• Based on Functional
Requirements

Property Proving

• Specify
Properties/Objectives

• Create Test Cases
Automatically to
proove the absence
or certitude that
requirements are
forfilled

Test Test
Test

Test Test
Test Test Test

Test

Test Test
Test Test Test

Test Test Test
Test

Test Test
Test Test Test

Test Test Test
Test Test Test

Test

Automatically

Generate C code

for Test Cases

Automatically

Generate C code

for Model

100

Simple Example

 Generate Test Cases Based on Coverage

 Generate Counter Examples for division by zero

 Generate Test Cases based on Conditions and

Objectives

 Generate Counter Examples Test Cases Based on

Properties

101

System Modeling with Simulink

102

System Modeling with Simulink

 See Dependencies

 Share Model via HTML

 Generate Reports

Automatically

103

Workflow in Simulink

Integrates into Version Control

104

System Modeling with Simulink

105

System Modeling with Simulink

MultiRate

106

System Modeling with Simulink

State Transition Tables

107

System Modeling with Simulink

Simulink Blocks

108

System Modeling with Simulink

MATLAB Functions

109

System Modeling with Simulink

StateFlow

110

System Modeling with Simulink

MultiRate

Tests Results

Validate

Tests Results

Validate

Tests Results

Validate

Tests Results

Validate

Tests Results

Validate

111

System Modeling with Simulink

Tests

Tests

Tests

Tests

Tests

Tests

Results

Validate

Results

Validate

Results

Validate

Results

Validate

Results

Validate
Results

Validate

112

How do I know how “good” Z is? What to do

when there is a problem?

Process

Versioning

Traceability

Requirement
to Machine

Reports

Behaviour

Functional

Formal
Proving

Automatic
Testing

Run-time

Formal
Analysis

Certainty

Reports

Standards

Modeling
Standards

Coding
Standards

Checks

Re-
Usable

Components

Subsystems

Z

113

How do I know how “good” Z is? What to do

when there is a problem?

Process

Versioning

Traceability

Requirement to
Machine

Reports

Behaviour

Functional

Formal Proving

Automatic
Testing

Scheduling

Run-time

Formal Analysis

Certainty

Fault Detection,
Isolation and

Recovery

Reports

Standards

Modeling
Standards

Coding
Standards

Checks

Re-Usability

Components

Subsystems

Z

http://www.mathworks.com/help/releases/R2012b/simulink/project-management.html
http://www.mathworks.com/help/releases/R2012b/slvnv/index.html
http://www.mathworks.com/help/releases/R2012b/simulink/project-management.html
http://www.mathworks.com/help/releases/R2012b/simulink/project-management.html
http://www.mathworks.com/help/releases/R2012b/simulink/project-management.html
http://www.mathworks.com/help/releases/R2012b/simulink/project-management.html
http://www.mathworks.com/help/releases/R2012b/simulink/project-management.html
http://www.mathworks.com/help/releases/R2012b/rptgenext/index.html
http://www.mathworks.com/help/releases/R2012b/simulink/model-verification.html
http://www.mathworks.com/help/releases/R2012b/sldv/modeling-requirements-for-verification.html
http://www.mathworks.com/help/releases/R2012b/sldv/modeling-requirements-for-verification.html
http://www.mathworks.com/help/releases/R2012b/sldv/modeling-requirements-for-verification.html
http://www.mathworks.com/help/releases/R2012b/sldv/index.html
http://www.mathworks.com/help/releases/R2012b/sldv/index.html
http://www.mathworks.com/help/releases/R2012b/stateflow/schedulers.html
http://www.mathworks.com/help/releases/R2012b/sldv/index.html
http://www.mathworks.com/help/releases/R2012b/sldv/index.html
http://www.mathworks.com/help/releases/R2012b/sldv/index.html
http://www.mathworks.com/help/releases/R2012b/sldv/index.html
http://www.mathworks.com/help/releases/R2012b/stateflow/fault-detection-isolation-and-recovery.html
http://www.mathworks.com/help/releases/R2012b/stateflow/fault-detection-isolation-and-recovery.html
http://www.mathworks.com/help/releases/R2012b/stateflow/fault-detection-isolation-and-recovery.html
http://www.mathworks.com/help/releases/R2012b/stateflow/fault-detection-isolation-and-recovery.html
http://www.mathworks.com/help/releases/R2012b/stateflow/fault-detection-isolation-and-recovery.html
http://www.mathworks.com/help/releases/R2012b/stateflow/fault-detection-isolation-and-recovery.html
http://www.mathworks.com/help/releases/R2012b/stateflow/fault-detection-isolation-and-recovery.html
http://www.mathworks.com/help/releases/R2012b/stateflow/fault-detection-isolation-and-recovery.html
http://www.mathworks.com/help/releases/R2012b/stateflow/fault-detection-isolation-and-recovery.html
http://www.mathworks.com/help/releases/R2012b/rptgenext/index.html
http://www.mathworks.com/help/releases/R2012b/simulink/large-scale-modeling.html
http://www.mathworks.com/help/releases/R2012b/simulink/large-scale-modeling.html
http://www.mathworks.com/help/releases/R2012b/simulink/large-scale-modeling.html
http://www.mathworks.com/help/releases/R2012b/simulink/misra-c2004-compliance-considerations.html
http://www.mathworks.com/help/releases/R2012b/simulink/misra-c2004-compliance-considerations.html
http://www.mathworks.com/help/releases/R2012b/simulink/misra-c2004-compliance-considerations.html
http://www.mathworks.com/help/releases/R2012b/simulink/verify-model-syntax.html
http://www.mathworks.com/help/releases/R2012b/simulink/index.html
http://www.mathworks.com/help/releases/R2012b/simulink/model-architecture-1.html

114

Verification and Validation @ Model Level

Manual
Testing

• Create and use
your own tests

Run Coverage
Analysis

• Generate
Automatically Tests

• Add Test cases to
get 100% Coverage

Design Analysis

• Formally look for
design Error (divisions
by 0, square roots of
negative numbers)

Test Case
Creation

• Based on Functional
Requirements

Property Proving

• Specify
Properties/Objectives

• Create Test Cases
Automatically to
proove the absence
or certitude that
requirements are
forfilled

Test Test
Test

Test Test
Test Test Test

Test

Test Test
Test Test Test

Test Test Test
Test

Test Test
Test Test Test

Test Test Test
Test Test Test

Test

Automatically

Generate C code

for Test Cases

Automatically

Generate C code

for Model

115

Model Transformation is Key

116

Model Transformation is Key

 Automatic Code Generation

– From Simulink to:

 C

 C++

 Structured Text

 Verilog

 VHDL

– From C/C++/ADA/Verilog/VHDL to:

 Simulink

Simulink/Stateflow/Physical

Modeling

C C++ VHDL PLC Verilog

C C++ VHDL Fortran Verilog

117

Simulink Code Inspector

Independent code inspection

Code

inspection

report

?

Model and code development

Normalized

Model IR
Normalized

Code IR

Model IR Code IR

IR transformations

Matching

Embedded

Coder

C source

code

Simulink

model

 Static verification tool that checks

the generated code against model

 Automates DO-178B Table A-5

verification activities

 Technology allows seamless

upgrades to new releases

Traceability

report

IR: Intermediate representation

118

How can you prove that no error occurred?

What is Abstract Interpretation?

a

119

Example of lattice for variables values:

Signs

Bottom

<0

<=0

>0

>=0

=0

Top

_ |

_
|

More concrete

More abstract

Levels of

Abstraction

120

| Example of abstraction: Sign

volatile int random;

int x=0, y=0;

if (random) {

 x++;

 y--;

} else {

 x += 2;

 y += 1;

}

assert(y > 0);

assert(x > 0);

a

x: =0, y: =0

x: >0, y: =0

x: >0, y: <0

x: >0, y: =0

x: >0, y: >0

x: >0, y: Top

y: Top Orange

x: >0 Green

<0

<=0

>0

>=0

=0

_ |

_

Union

121

PolySpace Products for Code Verification

 Quality improvement

– Prove the absence of run-time

errors in source code

– Measure, improve, and control

 Usage

– Simple colored source code

– No compilation, no execution,

no test cases

– For C/C++ or Ada

 Process

– Run early in development cycle

– Use for automatically generated

and handwritten code

Red:

faulty

Green:

reliable

Gray:

dead

Orange:

unproven

P
r
o
v
e
n

121

122

The following slide focuses on the check for a division by 0.

How can you prove that no error occurred?

 Potential run-time errors:

– Are x and y initialized?

– Could a division by 0 occur?

– Could there be an underflow or overflow on „-‟, „/,‟ or „=‟ ?

Verifying x = x / (x – y)

122

123

+

+
+

+

+
+

+
+

+ +
+
+

+
+

+

+
+

+
+

+ +

+ +

+

+
+ +

No execution

No simulation

No test cases to write

Verifying x = x / (x – y)

+ +
+

+

+

+ y

x

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+
+

+

+

+

+
+

+
+

O

y=x

Type analysis

Abstract
interpretation

123

/ /

124

What color is your code today?
How do you prove code correctness?

T0 + 3 months T0 + 6 months T0

Number of

operations
u
n
k
n
o
w

n

0% proven

reliable

Nothing proven

Required for functional testing…

…not suitable to prove code

correctness

unknown

Input values

x

. .
.

.
. . .

unknown

. .
.

.
.

u
n

k
n

o
w

n

Static

analyzers

CODE

CORRECTNES

S

125

Challenge…

 Why is there red code here?

126

Challenge …

 Why is there red code here?

-1 <= Cos(alpha) <= 1

Worst case: 0.5/5 = 0.1

Worst case: sqrt(0.1 - 0.75) is a run time Error

127

Takeaways

 Challenge

– Prove absence of run time errors

– Code reviews takes a long time

– Coding standards

– Testing is an ambiguious word, depends how it is implemented

 Suggestion

– PolySpace can help

– Formally prove absence of run time errors

– Create reports on how well your code is tested

128

Dynamic systems

Environment models

Analog behavior

Multidomain System Modeling

Continuous-time

 Ordinary differential equations (ODEs)

 dx/dt = f(x,u,t)

 y = g(x,u,t)

 State space (linear first-order ODEs)

 dx/dt = Ax + Bu

 y = Cx + Du

 Transfer functions

 H(s) = b(s)/a(s)

129

Difference Equations
DSP
Image/video
Digital control

Multidomain System Modeling

Discrete-time

Continuous-time

130

Differential Algebraic Equations
Electronics
Mechanics
Hydraulics
Other domains

Multidomain System Modeling

Physical models

Discrete-time

Continuous-time

131

Control logic
Mode logic

Multidomain System Modeling

Continuous-time

Discrete-time

Physical models

State machines

132

Multidomain System Modeling

Continuous-time

Discrete-time

Physical models

State machines

Discrete-event

SimEvents

133

Multidomain System Modeling
Extended Kalman Filter

Continuous-time

Discrete-time

Physical models

State machines

Discrete-event

MATLAB
Simscape language
System objects

Text-based

134

Modeling Multidomain Systems

 Mechanical systems

 Embedded software

 Digital hardware

 System environment

 Analog/RF hardware

 Modeling domains

 Discrete-time

Continuous-time

System elements

State machine

Discrete-event

Physical models

Simulink

Simulink

SimEvents

Stateflow

Simscape
SimElectronics
SimMechanics

SimHydraulics
SimDriveline Text-based

MATLAB

 Mode control

135

Tools in Industry – Transitioning to Industry

 Open Video User Story

C:/trunk/MyPresentations/MathWorksVideos/Video User Stories/3.Transitioning_to_Industry-30.wmv

136

Video User Story

 Open Lear Video User Story

C:/trunk/MyPresentations/MathWorksVideos/Video User Stories/LEAR-20_012712.mp4

137

Focal Points

 With MATLAB/Simulink my professors think I am clever

 Knowing MATLAB/Simulink will help you get a job!

 Multi-Modeling Techniques are often needed

138

Available Resources

139

Visit MathWorks Web Site

 Learn about MathWorks

products

 Discover resources for

learning, teaching, and

research

 Learn how MathWorks

products are used in

academia and industry

Visit www.mathworks.com/academia

140 Visit www.mathworks.com/academia

141 Visit www.mathworks.com/academia/hardware-resources/

142

MATLAB Central

 Open exchange for the MATLAB

and Simulink user community
– 1.2 million visits per month

 File Exchange
– Upload/download free files including

MATLAB code, Simulink models, and

documents

– Rate files, comment, and ask

questions

 Newsgroup
– Web forum and newsgroup for

technical discussions about MATLAB

and Simulink

 Blogs
– Read posts from key MathWorks

developers who design and build the

products

Visit www.mathworks.com/matlabcentral

143

Learning Resources

 Interactive Video

Tutorials – Students learn

the basics outside of the

classroom with self-guided

tutorials provided by

MathWorks

– MATLAB

– Simulink

– Signal Processing

– Control Systems

– Computational Mathematics

Visit www.mathworks.com/academia/student_center/tutorials

144

145

Student Version

R2012b

 MATLAB

 Simulink

 7 popular add-on

products
– Control System Toolbox

– Signal Processing Toolbox

– DSP System Toolbox

– Statistics Toolbox

– Optimization Toolbox

– Image Processing Toolbox

– Symbolic Math Toolbox

146

MATLAB Mobile

147 © 2012 The MathWorks, Inc.

Thank you for attention

